

Fundamentals on network interconnection and traffic exchange

RIPE Meeting Tehran, 19 November 2014

Gael Hernandez

Packet Clearing House

Summary

- Refreshing definitions
- Network interconnection and IXPs
- Routing and traffic exchange
- What else are IXPs useful for?

Refreshing definitions

- The Internet is a **decentralised** network of 5,000+ autonomous commercial interests.
- Internet Service Providers (ISPs) operate by exchanging traffic at their border, forwarding data from its source to its destination.
- The business relationships among ASes are of two forms:
 - *peering*: settlement-free traffic exchange among *peers*.
 - transit: one entity (customer) pays another entity (provider).
- Peering is an economic efficiency over transit.

ISP lifecycle

Step I: Simple Aggregator

ISP lifecycle (ii)

Step II: Redundancy and LCR

ISP lifecycle (iii)

Step IV: Local Peer

ISP lifecycle (iv)

Step IV: Network Service Provider

Network interconnection

- Network interconnection in the Internet cannot take place between all networks in a full mesh
 - Geographic reasons.
 - Scalability issues.

- A successful model for network interconnection is to use Internet exchanges points
 - Reduces the number of connections required.
 - Model allowing localisation of traffic.

Internet exchange points

- Physical infrastructure (layer 2 switching) that facilitates network interconnection.
 - Peering relationship between participants.
 - Internet bandwidth value creation.
 - Network effect.
 - Direct routes are the shortest routes (and also the cheapest!)
- Today there's about 430 IXPs built in 114 countries.

Internet exchange points (ii)

Technical dimension: DE-CIX topology

Routing example

Packets from customer are routed by Red ISP via IXP West

Routing example

Symmetry: Each network is responsible for its own costs

Measurements at IXPs

- Why are exchange points a good location to perform network measurements?
 - Neutral point of interconnection (good for measurements).
 - Multiple service providers (up to several hundreds).
 - Exchange of routing information
- What type of measurements?
 - Performance
 - Reachability

Local examples

 Looking glass route collectors to help ISPs troubleshooting routing issues. BGP router identifier 74.80.119.4, local AS number 3856 RIB entries 120773, using 7548 KiB of memory Peers 21, using 52 KiB of memory Peer groups 10, using 160 bytes of memory Dampening enabled.

Neighbor	v	AS	MsgRcvd	MsgSent	TblVer	InQ	OutQ	Up/Down	State/PfxRcd
74.80.119.1	4	42	46299	46265	0	0	0	04w4d03h	47
206.108.236.2	4	20940	39210	39484	0	0	0	03w6d10h	1
206.108.236.4	4	6079	25522	25400	0	0	0	02w3d15h	169
206.108.236.11	4	17356	87096	81352	0	0	0	04w0d06h	4
206.108.236.25	4	62929	85173	79005	0	0	0	03w6d10h	7
206.108.236.26	4	32286	64184	59701	0	0	0	02w4d17h	7
206.108.236.29	4	62947	60082	55842	0	0	0	02w5d09h	2
206.108.236.30	4	6939	410430	46463	0	0	0	04w4d06h	59577
206.108.236.31	4	32334	18891	17442	0	0	0	6d01h21m	1
206.108.236.32	4	2906	87803	81332	0	0	0	01w2d10h	1
206.220.231.55	4	3856	48597	191401	0	0	0	04w5d18h	0

 Traffic exchange statistics to analyse global and regional traffic growth trends

•

Global examples

RIPE RIS Project

- Remote Route Collectors (RRCs) used in the RIPE RIS Project are connected to Internet exchanges
- PCH Routing Archive
 - A historical archive of network adjacencies and reachability from about 80 IXPs

Questions? Thanks for your attention

Gael Hernandez Research and Outreach Specialist gael@pch.net

Packet Clearing House is the global non-profit organisation providing operational support and security to Internet critical infrastructure.

Check out the Global Directory of Internet Exchanges at http://www.pch.net/ixpdir