)3:10ff 19 b8:bf98:3 9 b8::10 Of 198. 00

Basic IPv6 Tutorial

Sandra Brás sbras@ripe.net RIPE NCC

Regional Meeting Tehran 18-19 November 2014

Overview

- IPv4?
- IPv6 in the RIPE Database
- IPv6 Addressing Plans

15:80)3:10ff 198. b8:bf98:3080 198.51.100.14 e db8::109 FOF 198.51 00

IPv4?

Section 1

"On 14 September 2012, the RIPE NCC ran out of their regular pool of IPv4"

- Around 2.4 billion internet users now
 - around 35% of all people
- Mobile phones are becoming internet devices
- The Internet of things
 - How will the Internet look like in 5 years?

The Internet of Things

Libelium Smart World

http://www.libelium.com/top_50_iot_sensor_applications_ranking © Libelium Comunicaciones Distribuidas S.L.

Smart Roads

- Extends the capacity of the IPv4 address space by sharing an IPv4 address between clients
- Fairly common technology, used everywhere
- Breaks the end to end connectivity model
- It doesn't allow communication with IPv6!
- You are probably going to need it in some form

8.3)3:10ff 198 b8:bf98:3080 198.51.100 e db8::109 FOF 198.5 00

IPv6 Address Basics

Section 2

IP Address Distribution

PHILOSOPHY CHANGE

IPv4 -> IPv6: What Philosophy Change?

How many subnets do I need?

Subnet always = /64

IPv6 Address Basics

• IPv6 address: 128 bits

- 32 bits in IPv4
- Every subnet should be a /64
- Customer assignments (sites) between:
 - /64 (1 subnet)
 - /48 (65,536 subnets)

Minimum allocation size /32

- 65,536 /48s
- 16,777,216 /56s

IPv6 Subnetting

2001:0db8:003e:ef11:0000:0000:c100:004d

2001:0db8:003e:ef11:0000:0000:c100:004d

2001:db8:3e:ef11:0:0:c100:4d

Addresses	Range	Scope
Loopback	::1	host
Link Local	fe80::/10	link
Unique Local	fc00::/7	global
Global Unicast	2000::/3	global
6to4	2002::/16	global
Teredo	2001::/32	global
Multicast	ff00::/8	variable

03:10ff 198 b8:bf98:308 198.51.100 e db8::109 FOF 198.5 00

IPv6 Address Notation

Exercise

28.9 03:10ff 198 b8:bf98:3080 198.51.100. 9 db8::109 FOF 198.5 00

IPv6 in the RIPE Database

Section 2

- Give your customers enough addresses
 - up to a /48
- For more addresses send in request form
 - alternatively, make a sub-allocation
- Every assignment must be registered in the RIPE Database

IPv4	IPv6	
ALLOCATED PA	ALLOCATED-BY-RIR	
ASSIGNED PA	ASSIGNED	
ASSIGNED PA	AGGREGATED-BY-LIR	
SUB-ALLOCATED PA	ALLOCATED-BY-LIR	
ASSIGNED PI	ASSIGNED PI	

• Status is ASSIGNED

- Minimum assignment size is a /64
- For more than a /48, send a request form

• Can be used to group customers

• broadband, for example

• "assignment size" = assignment of each customer

inet6num: netname: descr: country: admin-c: tech-c: status: assignment-size: mnt-by: notify: changed: source:

2001:db8:1000::/36 Brightlife **Broadband services** NL **BN649-RIPE BN649-RIPE AGGREGATED-BY-LIR** 48 **BRIGHTLIFE-MNT** noc@example.net noc@example.net 20130218 RIPE

Can be used for customers with potential for growth

- or for your own infrastructure
- or to delegate address space to a downstream ISP

- To qualify, an organisation must:
 - Meet the contractual requirements for provider independent resources
 - LIRs must demonstrate special routing requirements
- Minimum assignment size: /48
- PI space can not be used for sub-assignments
 - not even 1 IP address!

inet6num: netname: descr: country: admin-c: tech-c: status: assignment-size: mnt-by: notify: changed: source:

2001:db8:1000::/36 FREEZ **Freez Fridges** NL **RM1204-RIPE RM1204-RIPE AGGREGATED-BY-LIR** 56 LIR-MNT noc@lir-example.com noc@lir-example.com 20110801 RIPE

8.3)3:10ff 198 b8:bf98:3080 198.51.100 e db8::109 Of 198.5 00

Making Assignments

Exercise

Making Assignments Exercise

Fridge6!

b8:ab)3:10ff 198. b8:bf98:3080 198.51.100.14 e db8::109 FOF 198.51 00

Quiz!

Exercise

- Go to kahoot.it
- Enter the pin code
- Enter a username

Let's play!

2:3)3:10ff 198 b8:bf98:3080 198.51.100. 6 db8::109 FOF 198.5 00

IPv6 Addressing Plans

Section 3

- Mental health during implementation(!)
- Easier implementation of security policies
- Efficient addressing plans are scalable
- More efficient route aggregation

• IPv6 offers flexibility with addressing plans

• Network addressing can be done on 4-bit boundaries

- Your spreadsheet might not scale
 - There are 512K /48s in a /29
 - There are 65.536 /48s in a /32
 - There are 65.536 /64s in a /48
 - There are **16.777.216** /56s in a /32

• Find a suitable IPAM solution

- "Every interface ID must be a /64" (RFC 4291)
- Because of SLAAC
- Other RFCs followed this

• The only exception is a /127 for point-to-point links

- What should an ISP addressing plan contain?
 - Address space for internal use
 - Loopback interfaces
 - Point-to-point connections
 - Servers, routers and other infrastructure at POPs
- Use a /48 per POP
- Address space for customers

• One /128 per device

 One /64 contains enough addresses for all your manually configured loopback addresses

• Take an easy to remember block for loopback addresses

• With old router operating software:

- One /64 per point-to-point connection
- Reserve /64 per point-to-point link, but configure a /127

- With new router operating software:
 - RFC 6164
 - Configure a /127 per point-to-point connection

ISP Example

ISP Example

- We will assign a /48 per POP
- We will work on 4-bit boundary

Prefix	Number of /64 subnets
/48	65.536
/52	4096
/56	256
/60	16
/64	1

- Look at the number of point-to-point links
- Just to be sure, we reserve a /64 per link!

How much would you assign to cr1.pop2?

• In common cases:

- One /48 per POP
- Calculate growth
- Make it scalable

- Customers should get a large block of addresses
 - /48 for business customers
 - /48 or /56 for residential customers

- For more than a /48, send a request form
- Every assignment must be registered

Example Situation (Customers)

• A customer has 6 functions

- Servers
- Office PCs
- Network Engineer PCs
- Guests
- VPN (remote workers)
- Infrastructure (point-to-point and loopbacks)

• A customer has 3 locations

- Main building, floor 1
- Main building, floor 2
- Secondary office

• A customer receives 2001:0db8:1a2b::/48

• Work on 4-bit boundary

- 6 functions (leaves room for 10 more functions)
- 3 locations (leaves room for 13 more locations)
- We still have 8 bits!
 - Room for 256 networks per function per location

• Putting this in the address:

2001:0db8:1a2b:FLXX::/64

- F = Function (0=infrastructure, 1=servers, 2=office, 3=engineers, 4=VPN, f=guests)
- L = Location (0=main building 1, 1=main building 2, 2=secondary office)
- XX = Number of network of type + location

• 2001:0db8:1a2b:1000::/64

- Servers in Main Building, floor 1, network 0
- 2001:0db8:1a2b:1200::/64
 - Servers in the secondary office, network 0
- 2001:0db8:1a2b:f209::/64
 - Guest in secondary office, network 9

- 2001:0db8:1a2b:0000::1/128
 - Loopback address (infrastructure, location doesn't apply)
- 2001:0db8:1a2b:0102::/127
 - Point-to-point link (infrastructure, location doesn't apply)
- 2001:0db8:1a2b:41ab::/64
 - VPN in main office, floor 1, user 171

• The previous example is just an idea

Adapt as necessary

• 2001:0db8:1a2b:FFLX::/64

- 256 functions
- 16 locations
- 16 networks per function per location

• Tips:

- Work on 4-bit boundary
- Group subnets by function
- Group subnets by location
- Make a scalable addressing plan

What is the IPv6 address for an engineer's PC, in the main building floor 2, for computer number 2?

Example:

2001:0db8:1a2b:FLXX::/64

- F= Function (0=infrastructure, 1=servers, 2=office, 3=engineers, 4=VPN, f=guests)
- L= Location (0=main building 1, 1=main building 2, 2=secondary office)
- XX = Number of network of type + location

What is the IPv6 address for an engineer's PC,

in the main building floor 2,

for computer number 2?

Example:

2001:0db8:1a2b:FLXX::/64

- **F**= Function (0=infrastructure, 1=servers, 2=office, 3=engineers, 4=VPN, f=guests)
- L= Location (0=main building 1, 1=main building 2, 2=secondary office)
- XX= Number of network of type + location

Assignments to:

- www VLAN
- colo 1 and colo 2: consider that there are 250 customers behind each colo.
- cr1.pop2 and cr1.pop1
- Point-to-Point customer 1

Addressing plan: solution 2

- Number of hosts in a /64 is irrelevant
- Multiple /48s per pop can be used
 - separate blocks for infrastructure and customers
 - document address needs for allocation criteria
- Use one /64 block per site for loopbacks
- /64 for all subnets

- For private networks, consider ULA
- For servers you want a manual configuration
- Use port numbers for addresses
 - pop server 2001:db8:1::110
 - dns server 2001:db8:1::53
 - etc...

P8:9 03:10ff 198. b8:bf98:3080 198.51.100.14 e db8::109 FOF 198.51 00

Tips

Section 9

• "Requirements for IPv6 in ICT Equipment"

- Best Current Practice describing what to ask for when requesting IPv6 Support
- Useful for tenders and RFPs
- Originated by the Slovenian Government
- Adopted by various others (Germany, Sweden)

- Customers have no idea how to handle 65536 subnets!
- Provide them with information
 - <u>https://www.ripe.net/lir-services/training/material/</u>
 <u>IPv6-for-LIRs-Training-Course/Preparing-an-IPv6-</u>

Addressing-Plan.pdf

Websites

- <u>http://www.getipv6.info</u>
- http://www.ipv6actnow.org
- <u>http://datatracker.ietf.org/wg/v6ops/</u>
- <u>http://www.ripe.net/ripe/docs/ripe-554.html</u>

Mailing lists

- <u>http://lists.cluenet.de/mailman/listinfo/ipv6-ops</u>
- http://www.ripe.net/mailman/listinfo/ipv6-wg

Survey!

http://www.ripe.net/training/ipv6/survey

Questions?

The End!			Край			Y Diwedd		
•• •		Соңы	τ	Վերջ)	Fí		Finis
عايه	فک) End	de F		/ezh	-	Liðu	gt	Кінець
Konec	Kraj	Ë	nn	Fur	nd	-1		
Lõpp	Beigas	Vége	•	Son	Δn	Críoc	- ch	Kpaj
Fine	הסון	Endi	r	Sfârş		Fir		Τέλος
	nde	Коне			S	Slut	SI	utt
დასას	რული)	Pa	baiga	_			
Fim	Am	aia	Lo	ppu	Im	iem		Koniec