Network traffic telemetry
(NetFlow, IPFIX, sFlow)

Paolo Lucente

oMmacct

SEE 3 meeting, Sofia — Apr 2014



Presentation history

= 1.0:

— SEE 1 meeting, Dubrovnik, Sep 2011

- MENOG 13 meeting, Kuwait City, Sep 2013
= 1.1:

- SEE 3 meeting, Sofia, Apr 2014



Network traffic telemetry
(NetFlow, IPFIX, sFlow)

Agenda

O whoami: Paolo & pmacct

o Ramblings: Square 0 to reporting

SEE 3 meeting, Sofia — Apr 2014



whoami: Paolo

Been originally working for operators for a while
Been working for vendors for a little while after that

Been involved with IP accounting for a while
— Hence | stumbled upon NetFlow in the 90’s ©
Within operators, network traffic telemetry is
beneficial in several contexts, ie.:

— Traffic engineering

— Capacity planning

— Peering

— and also (ie. not only) security




pmacct is open-source, free, GPL’ed software

libpcap
-\ MongoDB
NetFlow BerkeleyDB

IPFIX — pmacct

sFlow - \).
RabbitMQ %
memory
tables

http://www.pmacct.net/

MySQL
PgSQL
SQLite

BGP
IGP
maps




Network traffic telemetry
(NetFlow, IPFIX, sFlow)

Agenda

O whoami: Paolo & pmacct

0 Ramblings: Square 0 to reporting

SEE 3 meeting, Sofia — Apr 2014



Square O

* NetFlow is not the only existing export protocol

* Consistent trend is to build extensible protocol
formats by means of templates (NetFlow v9,
IPFIX) or modules (sFlow)

e Export protocols, versions and templates (or
modules) available are solely mandated by the
underlying network hardware, ie.:

— Cisco? NetFlow!
— Juniper? NetFlow and IPFIX on M/T/MX; sFlow on EX

— Brocade? sFlow!



Square 0.5

* Another consistent trend: telemetry protocols
being generalized:

— Traditionally NetFlow/IPFIX and sFlow would
report on network traffic

— NetFlow now reports on firewall and NAT events
— sFlow now reports on VM system resources

* Additional pressure put on the collector
— Traditionally has to handle K or M flows/s

— Now if a CGN blade resets, it could be tens or
hundreds M events reported in one go.



Square 1

Essentially, top-down approach

Do:

— Start with a vision

— Start with goals to achieve
Don’t:

— Collect just for the sake of

— Collect because one day raw data will be useful ..

Goals drive to requirements



Requirements (1/2)

* Given goals, network topology, hardware, etc.

— Define an export model:
= what devices (routers, switches, ..) need to export
= which interfaces need to report
= which direction, inbound or outbound or both?
= whether to sample or not and if yes how much

* Reality checks: don’ t just assume hardware
can follow the ideal export model; double-
check vendor capabilities



Requirements (2/2)

* |s the network traffic telemetry going to do the
job alone or not? For example:

— Correlation with BGP benefits peering and IP transit
analysis (profitability, costs, violations, etc.)

— Correlation with IGP (plus estimation methods)
benefits traffic engineering and capacity planning
* |s there any margin for use of data reduction

techniques?
— Micro-flow information and as much as possible 1:1
sampling rate benefits security applications and R&D

* Requirements drive to choice of tooling and
storage (ie. flat-files, RRD, RDBMS, NoSQL, etc.)



Collector implementation - gotchas

* Organizational

— 800 pound gorilla project spanning across different
departments (including IT and Security where existing)

* Technical
— Exporters loose data along the way (hw/sw limits)

— Collectors loose data along the way (horizontal
scalability must be possible)

— Over-engineered protocol features (ie. NetFlow v9,
IPFIX sampling) drive to own creative implementations

* Verify expectations and perform consistency
checks against other sources, ie. interface counters



Collector implementation - scalability

* Divide-et-impera approach, ie.:

— Assign probes to collectors

— Assign collectors to storages, ie. database partitions
 Work on data reduction (if allowed by the goal):

— Increase sampling rate
— Aggregation at the exporter or (better) at the collector
— Fit data into larger time-bins

 Remove from the equation interfaces which are
not strictly essential to the task, ie. low-speed

* Do take into account on larger deployments that a
single collector might not fit all the bill due to,
typically, CPU or memory constraints



Storage method selection

* Plenty on the offer: flat-files, RDBMS, RRD, noSQL
DB, message brokers, memory tables, etc.:

— | do not come here with general statements (in fact: the
strategy of pmacct, for example, is to support them all)

— In fully integrated products (ie. backend + frontend) this
is transparent to end-users

— Otherwise, if open access to data is provided/needed
(which btw some fully integrated products also offer):
* Depends, ie. whether a well-known query language like SQL is

a pro; an indexed storage is a pro; an “have it all” to the micro-
flow level kind of storage is a pro; etc.

e Often it’s matter of personal preferences, ie. what one feels
most comfortable to query once in production



Maintenance (1/2)

e (Script to) verify the right set of data is hitting
the collector:
— Ingress + egress directions can lead to duplicates
— Backbone + edge interfaces can lead to duplicates

— Network infrastructure evolves: mistakes and
forgetting is around the corner

e (Script to) track collector hardware resources:
— Supports the divide-et-impera approach
— It’s good rule to do it anyway



Maintenance (2/2)

* (Script to) keep data-set size under control:

— Valid for both memory and disk-based storage
methods
— Drop older data is less complex than consolidating;

if going for inexpensive storage, ie. disk, consider
collecting same data at different time resolutions,

with different expiration periods

— Aggregate same set of data on-the-fly in multiple
ways in parallel, project-oriented!, is less complex
than storing micro-flows then sub-aggregating to
build specific reports



Reporting (1/2)

* Reporting via email or web is popular

* Key is interaction between backend and
frontend:
— If open access is granted to data-set, great stuff!

— Otherwise, make sure new reports can be (easily)
generated as requirements emerge

— Reporting can influence organization of the backend,
ie. RDBMS re-indexing

* Flexibility must be possible (if Sales, Purchase,
Product Management, etc. find it useful — be
prepared to handle their creativity!)



Reporting (2/2)

* Holy grail: a catch-all frontend encompassing a
mix of native and scriptable functionalities |,
reports, etc.)

* IMHO, value is really in having data available:

— | got recently reported: “I have put together a
frontend capturing most of the data visualization
requirements of my company in 48 hours with Twitter
Bootstrap”. And honestly it was a nice one.

— Even more recently I've seen a demo of somebody
inserting pmacct data in a ELK stack, a free, open-
source alternative to Splunk.



Network traffic telemetry
(NetFlow, IPFIX, sFlow)

Thanks for your attention!

Questions? Now or later

Paolo Lucente
pmacct

<paolo at pmacct dot net>
Keep in touch via LinkedIn

SEE 3 meeting, Sofia — Apr 2014



