A Brief Introduction to JPRS’ DNSSEC Implementation Research for TLD

RIPE55 DNS WG
Oct. 25, 2007
Japan Registry Services Co., Ltd. (JPRS)
Kentaro Mori <kentaro@jprs.co.jp>
Shinta Sato <shinta@jprs.co.jp>
Contents

• Background
• Requirements
• Design concepts
• Implementation
• Performance
• Field Test
Background

• Current status of .JP
 – A million of domain names
 – Frequent DNS updates (every 15 minutes)
 – Zone synchronization to 30 DNS servers (including IP anycast & stand-by servers)

• Issue regarding to implement DNSSEC
 – Zone data signing with existing tool (e.g. dnssec-signzone) takes longer time than our update interval

• JPRS decided to create a prototype implementation to solve this issue
Frequent DNS updates: Current .JP System

DNS setting requests from registrants

Registry Database

Extraction & copy of ALL zone data

.JP DNS Master

ixfr_from_differences

IXFR Almost Every 15 minutes

.JP DNS

Internet Users

Bottle-necks against further update frequency & creating DNSSEC related RRs
Major Requirements Defined in R&D

- **Large zone administration**
 - 10 million-domain class

- **Rapid updates**
 - Data updates by every minute (on service operation)
 - 100 domains update is performed within 10 seconds

- **Reliable zone data synchronization**
 - Checking sync. delay time
 - Checking data integrity

- **DNSSEC capability**
 - Compliance to RFC4033-RFC4035
 - Compliance to both of NSEC & NSEC3
 - Key management (generation/rollover)
Design Concepts of the Prototype Implementation

• **Easy integration** to current Registry system
 – Least changes to Registry system
 – DNSSEC & related features are provided by the Prototype implementation

• **RRset extraction from Registry database & DNSSEC signing in an incremental manner**
 – For rapid updates of large zone

• **Data integrity check of DNS servers without service interruption**
 – Even when DNS sever has some delay from Registry Database
System Components

1. Registry System (pseudo .JP/real .JP)
2. Zone Distribution System
3. Integrity Checking Tools
4. DNS servers (BIND 9, NSD 3)
System Diagram

- Incremental data Extraction & signing
- Zone data transfer
- Integrity Check Tools
- Incremental zone data synchronization
- Push updated domain name

Registrars

区系 Distribution System

区系 NSD 3

区系 BIND 9

区系 NSD 3

区系 BIND 9

区系 BIND 9
Zone Distribution System

• ‘Intelligent box’ between Registry system and DNS servers
 – Incremental data extraction from .JP Registry system
 – Zone data distribution to DNS servers
 • Using IXFR/AXFR for BIND, NSD, etc.
 – Zone data revision management
 • Possible to obtain any SOA #serial of zone data
 • For integrity check without service interruption
 – DNSSEC features (next slide)

• Implementation details
 – Developed from scratch by Java
 – PostgreSQL/Oracle/HSQL as backend DB
DNSSEC Features of Zone Distribution System

- Compliant to NSEC & NSEC3
- ZSK creation & RRset signing for all domains of Registry database on system initialization
- Incremental RRset signing according to the updates on Registry database
- Semi-automatic ZSK rollover & re-signing of RRsets
 - Semi-automatic means KSK private key needs to attach to the system manually for each time by security reason
 - When re-signing, old DNSKEYs / RRSIGs are deleted after appropriate time considering their TTLs
Integrity Checking Tools

- **Zone synchronization latency check tool**
 - Measures update latency of each DNS server from Zone Distribution System and checks if the latency is in allowable time frame
 - Designed for frequent & light-weight checking

- **Full data integrity check tool**
 - Verifies zone data synchronization between Zone Distribution System and each DNS server
 - Obtains complete zone data from each DNS server and compares with corresponding zone data in Zone Distribution System
 - Designed for periodic (ex. daily/weekly) & comprehensive checking
Update Performance: Comparing with Current System

In case of adding 100 domains to zone of 1 million domains, with DNSSEC signing

JP registry System (current+DNSSEC)

Registrant → Registry System → Zone File Generation → dnssec-signzone → Stealth BIND → Authoritative (BIND)

- Domain name registration
- Extraction of whole domain data from DB (takes 1 minute)
- Generation of zone data (takes 30 seconds)
- DNSSEC signing (takes 20-25 minutes)
- Transferring zone data (takes 30 seconds)

1500 seconds 25min: proportional to number of domains in zone

Prototype System Far better than the current system

Registrant → Registry System → Zone Distribution System → Authoritative (NSD) → Authoritative (BIND)

- Domain name registration
- Extraction of incremental domain data from DB (takes 1 second)
- Generation of incremental zone data (takes 1 second)
- DNSSEC signing to incremental data (takes 5 seconds)
- Transferring zone data (takes 3 seconds)

10 seconds. independent from number of domains in zone
Field Test of Prototype System

- Check following performances
 - DNS update latency from .JP Registry database change
 - Data integrity of DNS servers after long term running
 - Without DNSSEC signing
 - Due to implementation problem at that time..
- Connected Zone Distribution System to real .JP Registry system for 1 month
 - Configured to pull out updated data every minute from .JP Registry database
- DNS servers were for internal test only
 - Placed in Tokyo & New York
 - Simulate queries from A.DNS.JP query log so that they had the same load as real .JP DNS servers
Field Test Scheme

Prototype System
- Zone Distribution system
- IXFR
- .JP DNS (internal)

Real System
- .JP Registry Database
- Extraction & copy of ALL zone data
- .JP DNS Master
- IXFR
- .JP DNS
- Almost Every 15 minutes

Extraction of updated data by every minute

Replay queries of A.DNS.JP

Internet Users

Copyright © 2007 Japan Registry Services Co., Ltd.
System Integration needed for Field Test

- Modification to real .JP Registry System
 - Only added RDBMS trigger to .JP Registry database which generates updated domain names list
- Data import Java class of Zone Distribution System
 - To obtain incremental data from .JP Registry database according to the list
- Easy to integrate!
 - Relatively..
Field Test Results

• 2 seconds of DNS data update latency from .JP Registry database change
 – As an average
 – If DNSSEC signing were done, it would be took 5 seconds or so?

• NO data inconsistency after 1 month running
Conclusions/Summary of the R&D

• JPRS Developed
 – Incremental data processing mechanism of .JP Registry updates, including DNSSEC signing/key management features
 • As Zone Distribution System

• The field test results satisfied
 – JP TLD requirements of large zone, rapid updates, and reliable synchronization
Thank you!