Internet based Emergency calls

Alexander Mayrhofer, nic.at GmbH
RIPE 55
Oct 2007, Amsterdam
Agenda

- How "legacy" Emergency Calling works
- Issues with IP-based emergency calls
- IETF architecture overview
- Who needs to do what?
- Regulation
- nic.at IP-based emergency calling projects
Emergency calls: "hello, world"

- Detect emergency call
- Route to "best" Public Service Access Point
- PSAP: Answer call, figure location, send help
Mobile: It gets trickier

- call destination depends on handset location
- handset location not in the "phone book": requires cooperation of PSAP and operator

Internet Emergency Calling – RIPE 55
Like real estate: "It's all about location"

- caller location required to find correct (best/closest/non-busy) PSAP
- caller location needed to send help

- "Plain" telephony uses phone number / "phonebook" as key to location
- Mobile telephony uses access network element to access location info.
- (mobile) VoIP uses ?
VoIP & emergency calls: OMG!

- VoIP SP needs location to properly route the call, but doesn't know it.
- Access ISP does not notice the call, but knows the user's location.

Internet Emergency Calling – RIPE 55
Problem: Separation of Service and Access

- Classical telephony is integrated
 - Service and Access from same provider
 - Easy to acquire location (even mobile)
- VoIP (usually) separates roles
 - Access is completely independent from service
 - And they don't even know each other
 - They only have one thing in common: the user!
"Other" problems

- World wide mobility of (some) services
 - requires worldwide standards
- Services without phone numbers
 - number cannot be used as a lookup key
 - PSAP can't "call back" based on number
- It might be more than just voice
 - Instant Messaging, Video, email
 - PSAPs usually don't even handle SMS
 - "VoIP" is not always "VoIP" (think Skype)
IETF emergency services work

- Working groups: ECRIT, GEOPRIV
- Location delivery (LCP)
- Service identification (service URN)
- Service discovery (LoST)
- Privacy, security (location by reference, location signing, location hiding)

Introduction:
- draft-ietf-ecrit-framework
- draft-ietf-ecrit-phone-bcp
IETF architecture
(ECRIT, GEOPRIV)

- client acquires location from access net
 - DHCP
 - LLDP
 - HELD (HTTP Enabled Location Discovery)
- client (or service provider) uses LoST
 - "Location to Service Translation" – think of a pizza delivery service directory.
 - returns available services, PSAP contacts, dial strings
- emergency call contains location
Step 1: Location Discovery

- Access network provides client with location

Internet Emergency Calling – RIPE 55
Step 1: Location Configuration

- **Spatial / Civic**
 - "Karlsplatz 1, Vienna" vs. "48°N 16°E"

- **By value / by reference**

- **DHCP** – (RFC3825, RFC4776)

- **LLDP-MED** – ANSI/TIA 1057
 - (LLDP: "CDP reloaded")

- **HELD (HTTP Enabled Location Delivery)**
Step 2: Service Discovery

dial: 112; urn:service:sos.police
sip:police@ams.nl;
tel:+31 xxx

Client uses LoST to discover dialstring, contact addresses

Internet Emergency Calling – RIPE 55
Step 2: Location to Service

- **Input data:** Location
- **Output data:**
 - available services (sos.police...)
 - contact URIs (sip, tel, ...)
 - service boundary (geographic object)

- XML/HTTP based, query/response
- expected to have similar query rate and importance as DNS
 - think of clients in cars, planes with frequent location updates
Step 3: Actual Emergency call

- Client can place emergency call to best PSAP (directly, or via VoIP SP)

Dial: 112; urn:service:sos.police; sip:police@ams.nl; tel:+31 xxx
Regulation & Motivation

- Most EU countries require emergency calling for telephony services
- Depends on classification of VoIP service (PSTN interopability)
- Weak execution, though. ("... in the best way technically feasible")
 - But – that might change (Sunday's news: "4 kittens die because Internet emergency call fails")
- Standardization is progressing rapidly – industry is barely watching
 - did someone mumble "IPv6" or "DNSSEC"?
 - changes cost money – government funding?
Who needs to do what?

- **Access networks**
 - location-enable their access lines
 - much effort, low incentive ($$$, privacy)

- **VoIP SPs**
 - Recognize, route, prioritize emergency calls
 - trust relations (location info, LoST server)

- **Software Vendors**
 - Add emergency support to VoIP client software

- **PSAPs**
 - publish their service coverage
 - expand service beyond PSTN-based telephony

- **Someone (?)**
 - run authoritative LoST servers for a region
 - define mapping of address elements to IETF standards
 - coordinate between PSAPs, government, access providers
nic.at emergency services work

- Investigating practical application of standards
 - "location-enabled access network in a box" (OpenWRT extension)
 - mapping Austrian address data to PIDF-LO (upcoming internet draft)
 - VoIP-enabling PSAPs

- Consulting
 - PSAPs, ISPs, VoIP SPs
nic.at emergency services work

- Participating in Austrian Emergency Services Forum
 - regulator, telcos, PSAPs, government – very few ISPs and VoIP SPs!
 - PSAP service area data collection

- LoST server prototype
 - similar to DNS in availability and performance reqs. – central function of local internet infrastructure
 - Funding?
conclusions

- Standards are progressing quickly.
- Implementation means effort.
- Regulators are looking away.
 - how long? Until standards finished?

- Suggestion to ISPs: Watch closely, and prepare. Audit systems from the perspective of customer location provisioning.
- Suggestion to VoIP SPs: Expect nice letters from the regulator if you don't route emergency calls properly. Watch related consultations.

- Location information is a big business. There might be added value to monetize.
Thank you!

Alexander Mayrhofer
nic.at GmbH
alexander.mayrhofer@nic.at
+43 1 5056416 34