BGP Flap Damping

Where to now?

Philip Smith
RIPE50, Stockholm
Early Internet was susceptible to "routing storms"
- Repeated withdrawal and re-announcement of /24 address blocks
- Consumed significant CPU on early routers
- Caused instability in the Internet

"Flap damping" proposed to mitigate the effects of this instability
History

- Route flap damping was introduced to BGP4
  - RFC2439 describes the algorithm and conditions flap damping is applied under

- Requirements:
  - Fast convergence for normal route changes
  - Suppress oscillating routes
  - Announce stable routes
  - History predicts the future
Issues

- Implementations are highly configurable
- No prior operational experience of the optimum configuration
- Operational experience showed that vendor defaults seemed too aggressive for the operational Internet
  - A couple of prefix flaps resulted in disconnectivity in the order of tens of minutes
  - BGP reset or router restart had severe implications for ISPs in the emerging commercial Internet
Solutions

- RIPE 178 documented the problems and proposed acceptable route flap damping configuration parameters
- Updated by RIPE 210 to include “Golden Networks”
  - The address blocks of the 13 Root Servers
- Further updated by RIPE 229
  - Added website and more configuration examples
New Problems

- We all thought RIPE 229 would solve the problems
- It has not
Research work examples:

- "Route Flap Damping Exacerbates Internet Routing Convergence"
  - Zhuoqing Morley Mao, Ramesh Govindan, George Varghese & Randy H. Katz, August 2002
- “What is the sound of one route flapping?”
  - Tim Griffin, June 2002
- Various work on routing convergence by Craig Labovitz and Abha Ahuja a few years ago
- “Happy Packets”
  - Closely related work by Randy Bush et al
Route changes caused by path exploration increments the flap penalty
- e.g. implementations penalise attribute changes
- Best path lost → next best path chosen → neighbouring AS sees this as AS_PATH attribute change → penalty incremented

Natural reaction is to not penalise non-decreasing path changes
- But this is not immune to local provider policies

Proposed selective route flap damping
Morley Mao et al
Selective Route Flap Damping

- Requires sender of route to include (relative) preference of route compared with previous announcement
  - Encoded as a BGP community?
- BGP keeps two bits to store comparative value of last two announcements received
  - 00 – fewer than two routes received
  - 01 – preference values of the route routes the same
  - 10 – latest route is higher preference than previous
  - 11 – latest route is lower preference than previous
- Comparison bits recomputed on fresh announcement
  - New value compared with old value
  - Change in value ⇒ route flap

- Simulation results highly successful
What next?

- Should RIPE 229 be declared obsolete? Or modified?
- Is flap damping bad for your network?
  - Do we need flap damping any more?
- Needed at Internet edge?
  - i.e. ISPs who are not providing transit to any other ASNs
- Needed in the Internet core?
  - Transit providers
What next?

- Proposal to reopen Route Flap Damping recommendations as a Routing WG work item
- Aim: New route flap damping recommendations for ISPs