Verification of Zebra as a BGP Measurement Instrument

Or

Can You Make Accurate Measurements With A Length of String

All Work and Experimentation done by
Hongwei Kong
Agilent Labs, China
hong-wei_kong@agilent.com

Presented by
Lance Tatman
Agilent Labs, US
lance_tatman@agilent.com
Should You Believe What You See

• Zebra is in use at RIPE and Oregon RouteViews as a BGP message recorder

• We, the research community, have been using BGP data recorded by Zebra for analysis of BGP behavior for several years now

• How good is the Zebra Data?
Our Method to Test for Truth

Our Method to Test for Truth
First We Verify route_btoa

• **Method:** Send known BGP data across wire. Record-Decode-Verify
 – Tested on Linux and Solaris with different results

Here’s Why

• When multi-protocol NLRI reachable/unreachable attribute present for IPv6 prefixes route_btoa cannot decode correctly
 – Interesting these messages were only observed on rrc03 (AMS-IX).
 – route_btoa can support this but support tied to capabilities of the kernel during compilation. Checks for kernel IPv6 support.

• When multi-protocol NLRI reachable/unreachable attribute present for IPv4 multicast prefixes route_btoa cannot decode correctly
 – Interesting we didn’t see any of these on any of the RIPE systems
 – Turns out route_btoa does support this, but it is tied to capabilities of the kernel during compilation. Checks for kernel multicast routing support
While Verifying route_btoa We Found A Couple of Odd Things With Zebra…First

• Some, but not all BGP “OPEN” messages are saved by Zebra in an alternative format, a format not recognized by route_btoa- reason is unknown
 • This does not occur on Zebra-to-Zebra sessions, but does occur on Zebra-to-bgpsim and Zebra-to-sbgp sessions. Observed in RIPE data.
 • AS and IP addresses, both source & destination are recorded as 0. Causes route_btoa to decode message as NULL.
 • Zebra should save in correct format and/or route_btoa should support irregular dump headers
While Verifying route_btoa We Found A Couple of Odd Things With Zebra…Second

- Very Large BGP Messages are Incompletely Saved by Zebra
 - In fact, this happens with all messages we observed with a length field of 4096 bytes
- Here is why
 - Zebra dump module buffer size is bgp-max-packet-size(4096Bytes) + bgp-dump-header-size(12bytes)
 - Zebra dump module does not take into account bgp-dump-message-header
 - Includes things like: source & destination AS, Interface index, Address Family, IP addresses
 - Zebra Bug Fixed by adding 40 bytes to buffer
Significance of Zebra’s Incomplete Saving of Messages with Header Field Length 4096

<table>
<thead>
<tr>
<th>File</th>
<th># of Prefixes With Zebra bug</th>
<th># of Prefixes Without Zebra Bug</th>
<th>% of Prefixes not Decoded by route_btoa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#A</td>
<td>#W</td>
<td>#A</td>
</tr>
<tr>
<td>Routeview-20021219.2022</td>
<td>220543</td>
<td>3370</td>
<td>225174</td>
</tr>
<tr>
<td>Routeview-20021219.2037</td>
<td>125850</td>
<td>1821</td>
<td>128343</td>
</tr>
<tr>
<td>Routeview-20021219.2052</td>
<td>259489</td>
<td>5806</td>
<td>265288</td>
</tr>
<tr>
<td>Routeview-20021219.2107</td>
<td>129341</td>
<td>1396</td>
<td>131777</td>
</tr>
<tr>
<td>RRC03-20030106.0930</td>
<td>107730</td>
<td>3278</td>
<td>107730</td>
</tr>
<tr>
<td>RRC03-20030131.0230</td>
<td>134127</td>
<td>6180</td>
<td>134127</td>
</tr>
</tbody>
</table>
Loss of Prefixes Due to Incompletely Captured BGP Messages:

Count of Messages Recorded

Count of Prefixes Recorded
Who Watches the Watchers

Finding a Bug in the Ethereal BGP Dissector

• Using fixed version of Zebra we compared on-wire observations with Zebra dumps using a known data stream

• Zebra matched the known stream but data obtained from Ethereal using the Ethereal BGP Dissector contained fewer Announcements than expected

• Here’s Why
 • If a BGP message header spans two TCP segments then it is not recognized by BGP Dissector and is not decoded

• Bug reported and fixed in version 0.9.12 of Ethereal
Ethereal BGP Dissector Bug for Cross TCP Segment BGP Messages:
Overcoming Limitations of libpcap

Time (s)

#Announcements in every comparison interval

[Graph showing comparison between Zebra dumped data and Ethereal captured data]

- Zebra dumped data
- Ethereal captured data

Capture losses

KEEPALIVE lost
Overcoming Limitations of libpcap

- We observed losses in libpcap under heavy load

Here’s Why
- Queue overflows in libpcap ver.0.7.2

Libpcap 0.8.030314
- Allows network adapter to directly capture to system memory
- Implements large ring queue in system memory

- Rebuilt Ethereal with libpcap 0.8.030314
 - All loss was eliminated
More Problems With BGP Dissector

• Next we introduced TCP segment losses using NIST Net
 • Using BGP Dissector to reconstruct the session we found “extra” BGP messages.
 • Problem was reported to Ethereal developers
 • As of Ethereal ver 0.9.12 problem is still not fixed

• Consequences
 • Pay attention particularly when evaluating multi-hop BGP sessions reconstructed using BGP Dissector
Finally They Match—Most Bugs Fixed, Others Avoided
Other Zebra Issues Of Concern to Researchers

• Timestamps don’t reflect on-the-wire times
 • Caused us to need to use keep-alives as synchronization markers

• Missed keep-alives
 • Causes session to break and retransmit of full table

• Records only inbound BGP messages
 • Miss outbound NOTIFICATION messages

• Sends NOTIFICATION messages which break session

• 10+ Second recording dead time after session reset

• Amount/complexity of code is overkill- only need a recorder
Summary

• Verified the behaviors of the tools used to process Zebra BGP data files.
 – revised these tools and solved the problems found
• Explored the consistency of Zebra BGP data collections
 – Found bugs in Zebra
• Verified Zebra BGP data collecting module
 – Without BGP session break, Zebra collects BGP data consistently
 – During session break, Zebra BGP data may not be consistent with on-wire captured data
 – Zebra can delay sending KEEPALIVE messages to the peer when there is heavy BGP traffic and result in session break and corrupted data.
 – Zebra Data capturing is delayed when there is heavy BGP traffic
More Information

• The full report is available on the RIPE RIS analysis page
 • http://www.ripe.net/ripencc/pub-services/np/ris/analysis.html

• Hong-Wei Kong
 • hong-wei_kong@agilent.com

• We are developing a BGP recording instrument and would like your suggestions on features and requirements