

RIPE NCC DNS Services

Johan ter Beest

RIPE NCC Services

training meetings
coordination DNS transfers

policy development registration

ASN RIPE Labs IPV6 research

mergers experience IPV4 share presentations

RIPE Stat RIPE Atlas
probes

mailing lists

RIPE NCC and DNS

- Reverse DNS
- Secondary DNS service for ccTLDs
- Operator of <u>k.root-servers.net</u>
- (one of AS112 operators)

Reverse DNS

Reverse DNS

- Directly linked to our registry function
- RIPE NCC is authoritative for all address ranges in the RIPE Registry, including legacy space
 - in-addr.arpa
 - ip6.arpa
- Authority delegated to the address holder
 - Controlled via RIPE Database

How Does it Work?

Every IPv4 and IPv6 address can have a DNS PTR record associated with it

- This is used in a variety of security applications
- Often logs show this name rather than the IP address

• Example:

- 193.0.6.139 -> 139.6.0.193.in-addr.arpa PTR www.ripe.net
- 2001:67c:2e8:22::c100:68b -> 2001:**0**67c:**0**2e8:**00**22:**0000:0000**:c100:**0**68b
- b.8.6.0.0.1.c.0.0.0.0.0.0.0.0.2.2.0.0.8.e.2.0.c.7.6.0.1.0.0.2.ip6.arpa PTR www.ripe.net

Secondary DNS

ccTLD Secondary Service

Second level of DNS is just as important as the root

- Root servers only point to ccTLD and gTLD servers
- Without a second level DNS server it would still break

Each TLD operator runs its own set of servers

- Similar to root servers these often use anycast
- Secondaries sometimes "swapped" or outsourced

RIPE NCC provides secondary DNS for 77 ccTLDs

- For the benefit of the Internet
- Stable operation from multiple locations

ccTLD Secondary Service

LB is operated by:

-American University of Beirut Computing and Networking ServicesPrimary zeina.aub.edu.lb

Secondary services are provided by:

- rip.psg.com (IPv6 Enabled)
- ns1.dns.aq
- fork.sth.dnsnode.net (IPv6 enabled)

DNSMON (dnsmon.ripe.net) monitors many TLDs,

 .LB is not one of them at the moment, as a policy, the operator has to authorise us to start monitoring their service

K-root Operations

Root Servers

- There are 13 DNS Root servers with 12 operators
 - Each root server runs multiple instances, using anycast
 - Spread all across the world

Α	Verisign - 5 sites	Н	US Army - 2 sites
В	ISI - 1 site	1	Netnod - 41 sites
С	Cogent - 8 sites	J	Verisign - 74 sites
D	UMD - 59 sites	K	RIPE NCC - 33 sites
Е	NASA - 12 sites	L	ICANN - 153 sites
F	ISC - 57 sites	M	WIDE - 7 sites
G	US DOD - 6 sites		

Root Servers Globally

source: http://www.root-servers.org

K-root

- Hosted nodes based on single-box solution
- Easy to set up, peering with one organisation
 - Host is free to decide on anycast announcing policies

Full automation

- Nodes will be taken out of the anycast network automatically if something is wrong, only three out of five core nodes are needed to handle peak K-root traffic
- Almost all technical set-up and monitoring systems are automatically added on our side
- No expensive resource requirements for hosts

Hosting K-root

- We consider every request
 - Technical requirements published on k.root-servers.org
- We are particularly interested in:
 - Hosts that can improve K-root access globally, based on our measurements
 - Hosts in the RIPE NCC service region

Questions

jterbeest@ripe.net

